

THE UNIVERSITY OF **MEMPHIS**.

Basic Freeways and Multilane Highways (LOS)

CIVL 4162/6162

www.memphis.edu

Learning Objectives

- Define uninterrupted facilities
- Determine LOS of
 - Basic freeway segments
 - Multilane highways

Uninterrupted Flow Facilities

- Pure uninterrupted facilities occurs on freeways
- It can also exist on some surface facilities
 - Long stretch of rural/suburban areas between points of fixed interruption
- Example:
 - Surface facility more than 2 miles from the nearest point of fixed interruption can be called as uninterrupted.

Primary Types of Uninterrupted Flow Facilities

- Freeways
 - Pure uninterrupted flow
- Multilane Highways
 - Sections of multilane highways (four or six lane) that are more than two miles from the nearest point of fixed operation
- Rural Two-lane Highways
 - Sections of two-lane highways (one lane in each direction) that are more than two miles from the nearest point of fixed operation

Capacity

• The capacity of a facility is the maximum hourly rate at which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. (HCM 2000)

Capacity Under Ideal Conditions

Type of Facility	Free-Flow Speed (mi/h)	Capacity	
Freeways	≥70	2,400 pc/h/ln	
	65	2,350 pc/h/ln	
	60	2,300 pc/h/ln	
	55	2,250 pc/h/ln	
Multilane	≥60	2,200 pc/h/ln	
Highways	55	2,100 pc/h/ln	
	50	2,000 pc/h/ln	
	50	1,900 pc/h/ln	
Two-Lane	All	3,200 pc/h	
Highways		(total, both dir)	
		1,700 pc/h	
		(max. one dir)	

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Types of Capacity (HCM 1950)

- Basic Capacity
 - Maximum number of passenger cars that can pass a given point on a lane or roadway during one hour under the most nearly ideal roadway and traffic conditions which can possibly be attained
- Possible Capacity
- Practical Capacity

Service Flow Rate

• A service flow rate is defined as the maximum flow rate of flow that can be reasonably expected on a lane or roadway under prevailing roadway, traffic, and control conditions while maintaining a particular level of service.

MEMPHIS.

Dreamers. Thinkers. Doers.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Service Volume

 Service volume is described as conditions that existed over a full hour as opposed to the standard 15 minute period.

- SVi=SFi*PHF
 - SVi: Service volume for LOS *i* (veh/hr)
 - SFi: Servce flow rate for LOS *i* (veh/hr)
 - PHF: Peak hour factor

THE UNIVERSITY OF **MEMPHIS**

The Level of Service Concept

- A quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed and travel time, freedom to maneuver, traffic interruptions, and comfort and convenience (HCM 2010).
- Rating scale A-F indicate best to worst operation

THE UNIVERSITY OF

Measures of	of Effectiveness	for	LOS
-------------	------------------	-----	-----

Type of Flow	Type of Facility	Measure of Effectiveness
Uninterrupted	Freeways (Basic, Weaving, Ramp)	Density (pc/mi/ln)
	Multilane Highway	Density (pc/mi/ln)
	Two-Lane Highway	Avg. Travel Speed (mph); % time spent following
Interrupted Flow	Signalized Intersections	Control Delay (s/veh)
	Unsignalized Intersections	Control Delay (s/veh)
	Urban Streets	Average Travel Speed (mph)

www.memphis.edu

(a) A Typical 8-Lane Freeway

(b) A Divided Multilane Rural Highway

(c) A Divided Multilane Suburban Highway

(d) An Undivided Multilane Suburban Highway

(e) A Multilane Highway w/TWLTL

(f) An Undivided Multilane Rural Highway

Figure 14.1 Typical Freeway and Multilane Highway Alignments (*Sources:* Photo (a) courtesy of J. Ulerio; (b),(c),(d),(f) Used with permission of Transportation Research Board, National Research Council, "Highway Capacity Manual," *Special Report 209,* 1994, Illustrations 7-1 through 7-4, p. 7-3; (e) Used with permission of Transportation Research Council, *Highway Capacity Manual*, December 2000,

Dreamers. Thinkers. Doers.

www.memphis.edu

THE UNIVERSITY OF

Basic Freeway and Multilane Highway Characteristics

- Speed-Flow Characteristics
 - No heavy vehicles in traffic stream
 - A driver population dominated by regular or familiar users of the facility
- Level of Service Characteristics
 - LOS-A through F (see next slide)

THE UNIVERSITY OF

Dreamers. Thinkers. Doers.

LOS A

LOS C

LOS B

LOS F

LOS F - Forced or breakdown flow

www.memphis.edu

vmemphis.edu

THE UNIVERSITY OF **MEMPHIS**

LOS Estimation: Freeways

Equations for LOS Estimation-Freeways

FFS (mi/h)	Break-Point (pc/h/ln)	Flow Rate Range $\geq 0 \leq \text{Break-Point}$	$>$ Break-Point \leq Capacity
75	1,000	75	$75 - 0.00001107 (v_n - 1.000)^2$
70	1,200	70	$70 - 0.00001160 (v_p - 1.200)^2$
65	1,400	65	$(65 - 0.00001418 (v_p - 1.400)^2)$
60	1,600	60	$(v_p - 0.00001816 (v_p - 1.600)^2)$
55	1,800	55	$55 - 0.00002469 (v_p - 1.800)^2$

Table 14.1: Equations for Curves in Figure 14.1

Notes:

1. FFS =free-flow speed.

2. Maximum flow rate for the equations is capacity: 2,400 pc/h/ln for 70- and 75-mph FFS; 2,350 pc/h/ln for 65-mph FFS; 2,300 pc/h/ln for 60-mph FFS; and 2,250 pc/h/ln for 55-mph FFS.

(Source: Basic Freeway Segments, Draft Chapter 11, NCHRP Project 3-92, Production of the 2010 Highway Capacity Manual, Kittelson and Associates, Portland OR, 2009, Exhibit 11-3, p. 11-4.)

www.memphis.edu

THE UNIVERSITY OF **MEMPHIS**.

LOS Estimation: Multilane Highways

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Equations for LOS Estimation: Multilane Highways

Equations for Curves

FFS (mi/h)	For v ≤ 1,400 pc/h/ln S (mi/h)	For v > 1,400 pc/h/ln S (mi/h)	
60	S = 60	$S = 60 - \left[5.00 \left(\frac{v_p - 1,400}{800} \right)^{1.31} \right]$	
55	S = 55	$S = 55 - \left[3.78 \left(\frac{v_p - 1,400}{700}\right)^{1.31}\right]$	
50	S = 50	$S = 50 - \left[3.49 \left(\frac{v_p - 1,400}{600}\right)^{1.31}\right]$	K
45	S = 45	$S = 45 - \left[2.78\left(\frac{v_p - 1,400}{500}\right)^{1.31}\right]$	

THE UNIVERSITY OF

LOS Criteria

Table 14.2: Level of Service Criteria for Basic Freeway Segments

 and Multilane Highways

Level of Service	Density Range for Basic Freeway Sections (pc/mi/ln)	Density Range for Multilane Highways (pc/mi/ln)
А	$\geq 0 \leq 11$	$\geq 0 \leq 11$
В	$> 11 \le 18$	$> 11 \le 18$
С	$> 18 \le 26$	$> 18 \le 26$
D	$> 26 \le 35$	$> 26 \le 35$
E	$> 35 \le 45$	$>$ 35 \leq (40–45) depending on FFS
F	Demand Exceeds	Demand Exceeds Capacity
	Capacity > 45	>(40-45) depending on FFS

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Dreamers. Thinkers. Doers.

mphis.edu

Maximum Service Flow Rate: Basic Freeway Sections

Table 14.3: Maximum Service Flow Rates for BasicFreeway Sections

FFS	Level of Service					-
(mi/h)	Α	В	С	D	Ε	
75	820	1,310	1,750	2,110	2,400	
70	770	1,250	1,690	2,080	2,400	
65	710	1,170	1,630	2,030	2,350	
60	660	1,080	1,560	2,010	2,300	
55	600	990	1,430	1,900	2,250	R

Note: All values rounded to the nearest 10 pc/h/ln.

(*Source: Draft Chapter 11: Basic Freeway Segments*, National Cooperative Highway Research Program Project 3–92, Transportation Research Roard Washington DC, Exhibit 11, 18, p. 11, 24.)

isedu

THE UNIVERSITY OF **MEMPHIS**.

Maximum Service Flow Rate: Multilane Highways Table 14.4: Maximum Service Flow Rates for

Multilane Highways

FFS	Level of Service					
(mi/h)	A	B	С	D	Ε	
60	660	1,080	1,550	1,980	2,200	
55	600	990	1,430	1,850	2,100	
50	550	900	1,300	1,710	2,000	
45	490	810	1,170	1,550	1,900	

Note: All values rounded to the nearest 10 pc/h/ln.

(*Source:* Used with permission of Transportation Research Board, National Research Council, from *Highway Capacity Manual*, Dec 2000 Exhibit 21.2 p. 21.3 Modified.)

THE UNIVERSITY OF **MEMPHIS**.

Factors Influencing LOS

- Volume
- Lane width
- Lateral obstructions
- Traffic composition
- Grade
- Speed

Dreamers. Thinkers. Doers.

Types of Analysis

- Operational Analysis
- Service Flow Rate and Service Volume Analysis
- Design Analysis

Operational Analysis

Flow Rate:

$$v_p = \frac{v}{PHF \ \hat{N} \ \hat{f}_{HV} \ \hat{f}_p}$$

TZ

Where:

 $v_p = 15$ -minute passenger-car equivalent flow rate (pc/h/ln) V = hourly volume in the given direction of flow (vph) PHF = peak-hour factor

N = number of lanes in the given direction of flow

 f_{HV} = an adjustment factor for th presence of "heavy" vehicles

f_p = an adjustment factor to account for the fact that all drivers of the facility may not be commuters or regular users.

*Basis for analysis is peak 15 min flow rate.

THE UNIVERSITY OF **MEMPHIS**

Example: Graphical Solution

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

www.memphis.edu

Service Flow Rate and Service Volume Analysis

 $SV_i = MSF_i \times PHF \times N \times f_{HV} \times f_p$

- Where:
- SV_i = service volume over a full peak hour for LOS "i", veh/h
- MSF_i = maximum service flow rate for level of service "i", pc/h/ln
- *Remove PHF to get SF

Design Analysis

$$N_{i} = \frac{DDHV}{MSF_{i} `PHF `f_{HV} `f_{p}}$$

Where:

Ni = number of lanes required (in one direction) to provide LOS "i"

DDHV = directional design hour volume, veh/h

THE UNIVERSITY OF

Basic Freeway Segment Characteristics

Ideal conditions for maximum service flow rate:

- Minimum interchange spacing 2 miles
- Only passenger cars
- Lane widths \geq 12 feet
- Lateral obstructions ≥ 6 ft from roadway edge
- Level terrain (grades < 2%)
- Drivers typical of weekday (regular) traffic
- 10 or more lanes in urban areas **removed in HCM2010

Free Flow Speed: Basic Freeway Segments

$FFS = 75.4 - f_{LW} - f_{LC} - 3.22 TRD^{0.84} + HCM2010$

Where:

FFS = estimated free flow speed in mph.

BFFS = estimated base free flow speed in mph (75 mph for rural freeways, 70 mph for urban based on HCM recommendations).

 f_{LW} = adjustment for lane width (if less than 12 ft), mph.

 f_{LC} = adjustment for right side lateral clearance (if less than 6 ft), mph.

 $f_N = adjustment$ for # of lanes (if less than 5 in one direction), mph. $f_{ID} = adjustment$ for interchange density if < 2 mi, mph.

TRD = total ramp density (ramps/mi)

Adjustment for Lane Width: Freeway

Table 14.5: Adjustment to Free-Flow Speed for LaneWidth on a Freeway

Lane Width (ft)	Reduction in Free-Flow Speed, f _{LW} (mi/h)	
≥12	0.0	
11	1.9	
10	6.6	

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-4, p. 23-6.)

Adjustment for Lateral Clearance : Freeway

Table 14.6: Adjustment to Free-Flow Speed for LateralClearance on a Freeway

Right Shoulder	Redu	ction in Fr f _{LC} (1	ree-Flow S mi/h)	peed,	
Lateral Clearance	L	anes in Or	ne Directio	ction	
(ft)	2	3	4	≥5	
≥6	0.0	0.0	0.0	0.0	
5	0.6	0.4	0.2	0.1	
4	1.2	0.8	0.4	0.2	
3	1.8	1.2	0.6	0.3	
2	2.4	1.6	0.8	0.4	
1	2.0	2.0	1.0	0.5	
0	3.6	2.4	1.2	0.6	

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-5, p. 23-6.)

www.memphis.edu

Total Ramp Density

- Total number of on-ramps and off-ramps within ± 3 miles of the mid-point of the study segment divided by 6 miles
- Ramp density is a surrogate measure that relates to the intensity of land use activity in the vicinity of study segment

Dreamers. Thinkers. Doers.

Multilane Highway Characteristics

Ideal conditions for maximum service flow rate:

- Lane widths ≥ 12 feet
- Total lateral clearance \geq 12 feet
- Divided highway
- No access points
- Only passenger cars in traffic stream
- Regular roadway users

MEMPHIS

THE UNIVERSITY OF

Free Flow Speed: Multilane Highways

 $FFS = BFFS - f_{LW} - f_{LC} - f_{M} - f_{A}$

Where:

FFS = estimated free flow speed in mph.

BFFS = estimated base free flow speed in mph (60 mph for rural or suburban based on HCM recommendations).

 f_{LW} = adjustment for lane width (if less than 12 ft), mph.

 f_{LC} = adjustment for total lateral clearance (if less than 12 ft), mph.

 f_M = adjustment for median type, mph.

 f_A = adjustment for access-point density, mph.

Adjustment for Lane Width: Multilane Highways

Table 14.8: Adjustment to Free-Flow Speed for MedianType on Multilane Highways

Median Type	Reduction in Free-Flow Speed, <i>f</i> _M (mi/h)
Undivided	1.6
TWLTLs	0.0
Divided	0.0

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 21-6, p. 21-6.)

THE UNIVERSITY OF **MEMPHIS**

Adjustment for Lateral Clearance : Multilane Highways

 Table 14.7:
 Adjustment to Free-Flow Speed for Total Lateral Clearance on a Multilane Highway

4-Lane Multilane Highways		6-Lane Multilane Highways		
Total Lateral Clearance (ft)Reduction in Free-Flow Speed, f_{LC} (mi/h)		Total Lateral Clearance (ft)	Reduction in Free-Flow Speed, <i>f_{LC}</i> (mi/h)	
≥12	0.0	≥12	0.0	
10	0.4	10	0.4	
8	0.9	8	0.9	
6	1.3	6	1.3	
4	1.8	4	1.7	
2	3.6	2	2.8	
0	5.4	0	3.9	
		1		

(Source: Used with permission of Transportation Research Board, National Research Council, Highway Capacity Manual, December 2000, Exhibit 21-5, p. 21-6.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Adjustment for Median Type: Multilane Highways

Table 14.8: Adjustment to Free-Flow Speed for MedianType on Multilane Highways

Median Type	Reduction in Free-Flow Speed, <i>f_M</i> (mi/h)
Undivided	1.6
TWLTLs	0.0
Divided	0.0

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 21-6, p. 21-6.)

THE UNIVERSITY OF

Adjustment for Access Point Density: Multilane Highways

Table 14.9: Adjustment to Free-Flow Speed for Access-Point Density on a Multilane Highway

Reduction in Free-Flow Speed, <i>f</i> _A (mi/h)
0.0
2.5
5.0
7.5
10.0

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December

THE UNIVERSITY OF

Heavy Vehicle Effects:

$$f_{HV} = \frac{1}{1 + P_T (E_T - 1) + P_R (E_R - 1)}$$

P_T , P_R = proportion of trucks and buses, and RV's E_T , E_R = PCEs for trucks and buses, and RV's

Analysis is based on general extended freeway segment Level – heavy vehicles maintain same speed as pc's (grade <2%). Rolling – HVs travel at speeds lower than pc. Mountainous – HVs operate at crawl speed for significant distances.

When conditions are very severe, we will instead base on grade and length of grade. Restrictions for use: No grade < 3% for longer than $\frac{1}{2}$ mile.

No grade $\geq 3\%$ for longer than $\frac{1}{4}$ mile.

Table 14.12 Passenger-Car Equivalents for Trucks and Buses on Upgrades

Upgrade (%) Length (mi) 2 4 5 6 8 10 15 < 2 All 1.5 1.5 1.5 1.5 1.5 1.5 1.5 >2-3 0.00-0.25 1.5 1.5 1.5 1.5 1.5 1.5 >2-3 0.00-0.25 1.5 1.5 1.5 1.5 1.5 1.5 >0.25-0.50 1.5 1.5 1.5 1.5 1.5 1.5 1.5 >0.50-0.75 1.5 1.5 1.5 1.5 1.5 1.5 1.5 >0.75-1.00 2.0 2.0 2.0 1.5 1.5 1.5 1.5 >1.00-1.50 2.5 2.5 2.5 2.0 2.0 2.0 >1.50 3.0 3.0 2.5 2.5 2.0 2.0 2.0	20 ≥ 2 1.5 1.5
Copyrune (%)Length (mi)245681015 < 2 All1.51.51.51.51.51.51.51.5 $>2-3$ 0.00-0.251.51.51.51.51.51.51.51.5 $>2-3$ 0.00-0.251.51.51.51.51.51.51.51.5 $>0.25-0.50$ 1.51.51.51.51.51.51.51.5 $>0.50-0.75$ 1.51.51.51.51.51.51.5 $>0.75-1.00$ 2.02.02.02.02.02.02.0 >1.50 3.03.02.52.52.52.02.02.0	20 ≥ 2 1.5 1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5 1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5 1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.5 1.5
>0.75-1.00 2.0 2.0 2.0 2.0 1.5 1.5 1.5 >1.00-1.50 2.5 2.5 2.5 2.5 2.0 2.0 2.0 >1.50 3.0 3.0 2.5 2.5 2.5 2.0 2.0 2.0	1.5 1.5
>1.00-1.502.52.52.52.52.02.02.0>1.503.03.02.52.52.02.02.0	1.5 1.5
>1.50 3.0 3.0 2.5 2.5 2.0 2.0 2.0	2.0 2.0
	2.0 2.0
>3-4 0.00-0.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5
>0.25-0.50 2.0 2.0 2.0 2.0 2.0 2.0 1.5	1.5 1.5
>0.50-0.75 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0
>0.75-1.00 3.0 3.0 2.5 2.5 2.5 2.0	2.0 2.0
>1.00-1.50 3.5 3.5 3.0 3.0 3.0 3.0 2.5	2.5 2.5
>1.50 4.0 3.5 3.0 3.0 3.0 3.0 2.5	2.5 2.5

Table 14.12: Passenger-Car Equivalents for Trucks and Buses on Upgrades

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Table 14.12 (continued) Passenger-Car Equivalents for Trucks and Buses on Upgrades

	L:		2 24				10				
>4-5	0.00-0.25	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.25-0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	2.0	2.0	
	>050-0.75	3.5	3.0	3.0	3.0	2.5	2.5	2.5	2.5	2.5	
	>0.75-1.00	4.0	3.5	3.5	3.5	3.0	3.0	3.0	3.0	3.0	
4	>1.00	5.0	4.0	4.0	4.0	3.5	2.5	3.0	3.0	3.0	14
>5-6	0.00-0.25	2.0	2.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
	>0.25-0.30	4.0	3.0	2.5	2.5	2.0	2.0	2.0	2.0	2.0	
	>0.30-0.50	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5	
	>0.50-0.75	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0	3.0	
	>0.75-1.00	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.0	
	>1.00	6.0	5.0	5.0	4.5	3.5	3.5	3.5	3.5	3.5	_
>6	0.00-0.25	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	2.0	
	>0.25-0.30	4.5	4.0	3.5	3.5	3.5	3.0	2.5	2.5	2.5	
	>0.30-0.50	5.0	4.5	4.0	4.0	3.5	3.0	2.5	2.5	2.5	
	>0.50-0.75	5.5	5.0	4.5	4.5	4.0	3.5	3.0	3.0	3.0	
	>0.75-1.00	6.0	5.5	5.0	5.0	4.5	4.0	3.5	3.5	3.5	
	>1.00	7.0	6.0	5.5	5.5	5.0	4.5	4.0	4.0	4.0	_

(*Source:* Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 29-8, p. 23-10.)

MEMPHIS

Table 14.13: Passenger-Car Equivalents for RVs on Upgrades

		E_R								
Grade	Length	h Percentage of RVs (%)								
(%)	(mi)	2	4	5	6	8	10	15	20	≥25
≤2	All	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
>2-3	0.00–0.50	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	>0.50	3.0	1.5	1.5	1.5	1.5	1.5	1.2	1.2	1.2
>3-4	0.00–0.25	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	>0.25–0.50	2.5	2.5	2.0	2.0	2.0	2.0	1.5	1.5	1.5
	>0.50	3.0	2.5	2.5	2.5	2.0	2.0	2.0	1.5	1.5
>4-5	0.00–0.25	2.5	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
	>0.25–0.50	4.0	3.0	3.0	3.0	2.5	2.5	2.0	2.0	2.0
	>0.50	4.5	3.5	3.0	3.0	3.0	2.5	2.5	2.0	2.0
>5	0.00–0.25	4.0	3.0	2.5	2.5	2.5	2.5	2.0	2.0	1.5
	>0.25–50	6.0	4.0	4.0	4.0	3.5	3.0	2.5	2.5	2.0
	>0.50	6.0	4.5	4.0	4.0	4.0	3.5	3.0	2.5	2.0

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway* Capacity Manual, December 2000, Exhibit 23-10, p. 23-10.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Table 14.14 Passenger-Car Equivalents for Trucks and Buses on Downgrades

Table 14.14: Passenger-Car Equivalents for Trucks andBuses on Downgrades

		E _T Percentage Trucks and Buses (%)							
Downgrade (%)	Length (mi)								
		5	10	15	≥20				
< 4	All	1.5	1.5	1.5	1.5				
≥4–5	≤4 >4	1.5 2.0	1.5 2.0	1.5 2.0	1.5 1.5				
>5-6	≤4 >4	1.5 5.5	1.5 4.0	1.5 4.0	1.5 3.0				
>6	≤4 >4	1.5 7.5	1.5 6.0	1.5 5.5	1.5 4.5				

(Source: Used with permission of Transportation Research Board, National Research Council, *Highway Capacity Manual*, December 2000, Exhibit 23-11, p. 23-11.)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Dreamers. Thinkers. Doers.

Example: FFS on Freeway

Given:

- Six-lane urban freeway (3 in each direction)
- Lane width = 11 ft
- Right-side lateral clearance = 2 ft from the pavement edge
- Commuter traffic (regular users)
- Find FFS

Example: FFS on Multilane Highway

- Four lane undivided multilane highway
 - Posted speed limit=50mi/hr
 - 11ft lanes
 - Frequent obstructions located 4 ft from the right pavement edge
 - 30 access points/mile on the right side of the facility
 - What is the free flow speed?

THE UNIVERSITY OF

Example: LOS of Basic Freeway (1)

Given:

- Four-lane freeway (2 in each direction)
- Lane width = 11 ft
- Right-side lateral clearnece = 2 ft
- Commuter traffic (regular users)
- Peak-hour, peak-direction demand volume = 2,000 veh/h 5% trucks, 0% RVs
- PHF = 0.92
- TRD = 4 ramps/mile
- Rolling terrain
- Find: LOS

THE UNIVERSITY OF

Dreamers. Thinkers. Doers.

Multilane Highways - Example

An existing six-lane divided multilane highway with a field-measured free-flow speed of 45 mph serves a peak-hour volume of 4,000 veh/h, with 15% trucks and no RVs. The PHF is 0.90. The highway has rolling terrain. What is the likely LOS for this section?